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DYNAMICS IN KAGERA CATCHMENT, EAST AFRICA 

 

MAJOR PROFESSOR: Dr. Tonny J. Oyana 

The Kagera basin in East Africa has experienced major land surface loss in tropical 

forests, woodlands, and savannas due to the conversion of land for agricultural purposes. This 

has resulted in soil degradation, siltation, eutrophication, desertification, biodiversity loss, and 

climate change. Damages in the Kagera have also led to pollution and sedimentation in Victoria 

Lake which receives water from the basin.  These environmental changes have an effect on 

people in this region who largely depend on the natural resources. It has been indicated that these 

problems are mainly due to population growth as this region has the highest population growth 

and density when compared to sub-Saharan countries. However, previous studies conducted in 

this region have not investigated the spatial relationship between population growth and LULC 

changes. The aim of this study was to quantify LULC changes that occurred from 1984 to 2011, 

and predict future scenarios. Another goal of this study was to investigate the spatial relationship 

between population growth/density and LULC changes, and its socioeconomic influences. A 

post classification change detection method and Markov chain model of LULC change were 

used to analyze the past and future LULC dynamics. Administrative level census data of Kagera 
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was used to calculate population growth and density, and these were overlaid to LULC change. 

The assessment of change for the period of 1984-2011 overall showed a major expansion of 

agriculture at the expense of woodland savanna. This was mainly attributed to demographic and 

socioeconomic/political changes prior to and during the study period.  Population growth and 

density were linked to transitions to agriculture, and agriculture dominance during the study 

period. In addition, the oil price shocks of the 1970's that led to the adoption of Structural 

Adjustment Program were implicated as the major global macroeconomic influence in the use of 

resources, mainly in the agriculture sector. Internal policies such as Tanzaniaôs ñUjamaò 

villagization of production, and biophysical factors such as precipitation and proximity to water 

bodies were also implicated to the LULC changes.  The findings in this study imply that 

understanding inter-relationship of factors is critically important, and the issue of LULC change 

must be approached in a holistic manner.  
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CHAPTER 1 

INTRODUCTION  

 

Land use and land cover (LULC) describes the economic use of land and surface 

features, respectively (Campbell, 2007). Humans play a major role as forces of change in the 

environment, inflicting environmental change at all levels ranging from the local to the global 

scale (Gamble et al., 2003). The various uses of land for economic purposes have greatly 

transformed land cover at a global scale (Turner et al., 1994). Over the last 10,000 years, almost 

half of the ice-free earth surface has changed and most of the result was due to the use of land by 

humans (Lambin et al., 2003; Turner et al., 2007). The production of agricultural and forest 

goods specifically have caused agriculture and forestry to become the most transformative events 

globally; with agricultural land rivaling forest cover and occupying 35% of the ice free land 

surface in 2000 (Foley et al., 2007). In using land to yield goods and services, humans alter 

ecosystems and their interactions with the atmosphere, aquatic systems, and surrounding land 

(Vitousek et al, 1997). 

LULC is one of the environmental issues mostly tightly linked to climate change in a 

complex manner, and changes in both can have profound effect on an ecosystemôs ability to 

provide goods and services to society (Loveland et al., 2003). Land use and cover plays a key 

role in climate changes through the exchange of greenhouse gases, sensible heat, and local 

evapotranspiration (Vitousek et al., 1997; Foley et al., 2005; Loveland et al., 2007). 

Approximately 35% of the CO2 emissions to the atmosphere were from land use (Foley et al., 

2005). In addition to climate change, growth of human population and land cover changes have 
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an effect on the biogeochemical cycles, habitat availability, biodiversity, soil erosion, water 

quality, water flow, and sediment flows (Vitousek et al., 1997; Dale 1997; Turner et al., 1994). 

Africa occupies one-fifth of the global land area and many of the continentôs resources 

such as forests, water, biodiversity, marine eco-systems have experienced changes due to both 

human and climate change drivers (Mosha, 2011). The deforestation of tropical rain forests of 

central Africa in general was higher in the 1980ôs than in the 1990ôs, and cropland expansion by 

small holders is a more prevalent form of land cover conversion in Africa (Lambin et al., 2003; 

Justices et al., 2001; Brink and Eva., 2009). 

The Kagera basin in east Africa has been one of the major locations around the world 

experiencing change in tropical forests, woodlands and savannas due to agricultural land use. 

Some of the consequences of these changes include soil degradation, siltation, eutrophication, 

desertification, biodiversity loss, and climate change. These changes have likewise been 

implicated with population growth, economic, and policy changes arising from the bordering 

countries of Burundi, Uganda, Tanzania, and Rwanda (Wasige et al., 2013). The population is 

projected to increase rapidly and the consequences of LULC changes remain a threat (NBI, 

2008). 

1.1. Rationale and problem statement 

 

In Kagera, the resources and ecosystems are under pressure due to fast population growth, 

agricultural expansion and intensification (progressive reduction of farm sizes), and 

unsustainable use of land (FAO, 2013).  This has caused persistence in land degradation 

accompanied by a serious loss of biodiversity. The impacts on the agro-ecosystems are also 
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affecting the livelihoods of the local populous since they largely depend upon natural resources 

for their living (FAO, 2013). Moreover, degradation in water quality, the loss of wetlands, 

sedimentation of aquatic systems, and reduced ground and surface water supply are being 

observed. Off site, the Kagera basin is also a major contributor of inflow to Victoria Lake (the 

second largest fresh water lake in the world). The changes in the Kagera basin have contributed 

to the pollution and sedimentation of Victoria Lake (Tamatamah, 2004).  

The above mentioned problems have been related to population growth,  as well as economic 

and policy changes arising from the bordering countries of Burundi, Uganda, Tanzania and 

Rwanda (Wasige et al., 2013; Tolo et al., 2012). Kagera is a heavily populated basin in the east 

African Rift Valley Lakes sub-region (NBI, 2008). The total population is around 15 million 

which accounts for 40% of the total Lake Victoria basin population (NBI, 2008). The population 

density of Kagera basin is 248 Ὧά, more than 8 times the average of sub-Saharan Africa (NBI, 

2008).  The future population is projected to increase at rates of 3.4% (Rwanda), 2.3% 

(Tanzania) and 3.2% (Uganda), which are relatively higher compared to the average rate of other 

sub-Saharan countries (2.5%) (NBI, 2008).  

For these reasons, the Kagera basin was selected for a visual study of the physical LULC 

changes at a regional level. Regional studies provide adequate spatial and temporal resolution 

and account for variations in cause to cover relationships that are not explained at the global 

level (Turner et al., 1994). Past studies have attributed population growth/density as a key driver, 

but none have tried to link them together. This study links population to land cover transitions 

with an explicit spatial component. It is also clear that causes of environmental degradation or 

change cannot be discussed in isolation from socioeconomic and political dynamics of the 
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country; especially for the agriculture sector of Sub-Saharan Africa, which most of the 

population relies on. Usually the formulation and implementation of economic reforms does not 

take into consideration the effects on natural resource use. Thus, this study aims to assess the 

socioeconomic/political and demographic factors' effect on the LULC changes of the Kagera 

basin. 

1.2. Aim of the study 

 

Projections of the consequences of current and future LULC change necessitates the 

reconstruction of past land cover changes (Love land et al., 2003). Good change detection 

research should provide change, spatial distribution of changed types, and change trajectories of 

land cove types (Lu et al., 2011).  This studyôs general aim was to investigate the LULC changes 

in the Kagera basin, while also looking at the implication of human activities on the observed 

LULC dynamics.  Specifically, this study aimed to: 

¶ Identify LULC changes for the duration of  28 years (1984-2011) using Land Sat images  

¶ Quantify LULC changes using IDRSIôs Land Change Modeler 

¶ To predict future LULC changes using the Markov chain model 

¶ Investigate the spatial relationship between population growth/density and LULC 

changes 

¶ Qualitatively assess the implication of socioeconomic factors on LULC changes 

 

 



 

5 

 

1.3. Research questions 

 

  To complement the above objectives, the study was guided by 3 specific research 

questions; 

i. What is the magnitude and dynamics of land cover change? 

ii. What will  future land cover types be like? 

iii.  What are the major factors that have driven the changes of LULC? 

 

 

 

 

 

 

 

 

 

 



 

6 

 

CHAPTER 2 

LITERATURE REVIEW  

 

This chapter presents the literature review in two sections: (1) Human-environment 

interactions (2) LULC. The human-environment interaction section investigates how humans 

drive environmental changes and how environmental changes affect them in return.  The next 

section focuses on environmental change (LULC change) in terms of causes and assessment 

methods. 

2.1 Human-environment Interaction  

 

The human dimension of geography and the environment study how technological, 

socioeconomic, and cultural drivers affect the environment and in turn the adaptation of the 

society (Gamble et al., 2003). This is one of the main components in the study of environmental 

changes (Gamble et al., 2003); namely, interactions between changes in the atmosphere, climate, 

the carbon cycle, the water cycle, and LULC.  The DPSIR (Driving forces, Pressure, State, 

Impacts and Responses) model (Figure 2.1) shows the relationship between environmental 

indicators (Smeets E. and Weterings R., 1999).  
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Figure 2.1  DPSIR framework  

Source: Global International waters Assessment (GIWA), 2001; European Environment 

protection Agency (EEA); Copenhagen 

 

  Figure (2.1) illustrates the relationship between the environment and human activities. 

Smeets E. and Weterings R., (1999) describe the process as follows: Socioeconomic 

development puts pressure on the environment and will change the state of the environment (e.g. 

the presence of pollutants in water which indicate the status of water quality). As a consequence, 



 

8 

 

these changes will be manifested as impacts on human health, ecosystems, and materials. Society 

will then respond (e.g. regulation, conservation etc.) in a way that feeds back on the driving 

forces or the state of the environment or impacts. Though the real world is much more complex 

than can be expressed in simple causal relationships, the communication necessitates simplicity 

to provide critical information about the phenomena (Smeets E. and Weterings R., 

1999).Gabrielsen and Bosch (2003) describe the DPSIR indicators as follows (Table 2.1):  

Table 2.1 DPSIR frame work elements 

 

Indicator type  Description of indicator type 

Driving forces Describes the social, demographic and economic developments in 

societies, corresponding life style, and levels of consumption and 

production patterns. 

Pressure Describes the pressure exerted by society through the release of 

substances (emission), physical and biological agents, use of resources 

and the use of land by human activities. 

State Gives a description of the quantity and quality of physical phenomena, 

biological phenomena and chemical phenomena (e.g. CO2 

concentration) 

Impact Pressure changes the state of the environment which in turn has impacts 

on the function of the environment as human and ecosystem health, 

resources availability, biodiversity, etc. 

Response Describes the responses by groups (individuals) in society and 

government in attempt to prevent, ameliorate, or adapt to changes. 

 

The dynamics of the DPSIR are expressed when the relationships between the elements 

(ñin-betweenò indicators) are introduced (Figure 2.2). Smeets E. and Weterings R., (1999) 
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explains as follows:  Eco-efficiency indicators indicate whether or not there is technological 

progress (i.e. they indicate technologiesô degree of efficiency).  The pathways and dispersion 

patterns are useful for modeling current and future changes in the state of the environment and 

impacts by indicating the time of delay in natural processes and time bombs in the environment. 

Similarly, the dose response indicators between impact and state help quantify the consequences 

or act as early warnings. The costs and benefits to society in responding are governed by the 

degree of impact, which requires economic data. There is little information available in regards 

to the policy effectiveness indicator explaining the relationship of response with other elements 

(Gabrielsen and Bosch, 2003) 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Indicators and their relationship  

Source (Gabrielsen and Bosch, 2003) 
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2.2. Land use and Land cover 

This section reviews the causes of LULC change and the methods involved in assessing 

the dynamics of LULC. Additionally, the LULC dynamics of the Kagera basin from previous 

studies are reviewed. 

2.2.1. Causes of land use land cover change 

 

LULC change is most important in understanding environmental change; necessitating 

the investigation of cause to cover relationship (Tuner et al., 1994). LULC changes are 

manifested through conversion and modification, which are caused by interactions between 

climatic and anthropogenic forces owing to its inherently complex nature (Lambin et al., 2003; 

Turner et al., 1994). Even though LULC change is affected by climatic change, it is primarily 

LULC change which drives environmental and climatic changes (Gamble et al., 2003; Loveland 

et al., 2003). LULC change and its relation to cause is very important as it has the greatest 

implications on the environment (Turner et al., 1994). Understanding the causes of land cover 

changes involves looking at proximate or direct causes at the local level and the decisions 

formed as a result of complex social, economic, political, demographic, technological, cultural, 

and biophysical factors at a regional/global level (Lambin et al., 2003). Turner et al. (1994) 

indicates there are variations in the observed cause to cover relationships at different levels as a 

result of different socioeconomic characteristics, politics, levels of affluence, and technological 

development as well as culture in different parts of the world. An individual look at the regional 

and local levels provides greater details in order to identify and account for these variations. As a 

result, the simplistic assumption that LULC is driven by only a few forces has moved to a 

complicated understanding that involves interactions among a large number of factors at 
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different spatio-temporal scales (Lambin et al. 2003). Lambin et al. (2003) and Dale et al (1997) 

further indicate that the complexity of these factors can be simplified to themes that relate 

various drivers to particular LULC changes (i.e., limited paths ways), but the problem is finding 

a dominant path way or primary cause of land use change. This is because the importance of 

these factors depends on the situation and spatial scale of study. Nevertheless, the past 

understanding of these forces acting from a local to a global level becomes very important as this 

improves our ability to predict LULC changes and its consequences. These predictions are 

crucial in order to propose successful management options for a given 

biophysical/socioeconomical/political situation (Loveland et al., 2003). Lambin et al. (2003) 

describes the main drivers of LULC changes which are summarized in Table 2.2. 

Table 2.2 Factors that influence land management decision of land use and land cover change 

Drivers (factors) Description 

Multiple causes 

A mix of driving forces that varies in time and space and acts on 

different levels. They are specific to human environmental conditions. 

They are biophysical and socioeconomic factors which can be slow 

and/or fast in nature. Usually, land use change occurs through a 

combination of both natures. 

Natural variability 

Natural environments interact with human causes of land use change. 

This could be in a synchronous or independent manner which leads to 

socioeconomic unsustainability. Usually, climatic driven ecosystem 

conditions amplify the pressure due to demands on the resources 

Economic and 

technological factors 

Land use change is predominantly the result of society responding to 

the opportunities and constraints created by markets and policies 

which in turn are influenced by global factors. This works on a 

decadal time scale. Access to technology for efficient land 

management is determined by distribution of wealth as a result it has 

an impact on geographical differences of economic opportunities and 

constraints. 
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Table 2.2 (Continued) 

Demographic factors 

This also is another factor which has a great impact on land use 

change over a longer time scale. It is a shift in rates of fertility and 

mortality, but it also means associated development of households life 

cycle. The life cycle is related to labor availabilit y, migration, 

urbanization, and the breakdown of extended families into several 

families. This life cycle is mainly a response to economic 

opportunities and constraints which affect land use change and which 

in turn affect household economy. Migration, on the other hand, is 

also a significant driver coupled with non-demographic factors (e.g. 

government polices) and some policies could trigger migration. 

Institutional factors 

Local and national policies and institutions (political, legal, economic, 

and traditional) affect decision making as they usually constrain the 

access to land, labor, capital, technology, and information and thus 

determine the land managers capabilities to participate and define 

institutions. e.g. decision making systems(decentralization, inclusion 

of local communities in decision making) and institution control over 

distribution of resources. Ill -defined policies and weak institutional 

enforcement are causes of land use change. Some policies that 

influence land use change are policies of self-sufficiency, price control 

on agricultural inputs and outputs, structural adjustments, landholding 

consolidation, as well as investments in monitoring and guarding 

natural resources. 

Cultural factors 

The individual land managersô beliefs, attitudes, motives, collective 

memories, knowledge, skills, individual perceptions, and personal 

histories influence land use decisions. Cultural factors can be linked to 

political and economic inequalities (e.g. status of women and ethnic 

minorities affects access to land use). 

Globalization 

This is the process that underlies the other drivers and it amplifies or 

attenuates their impact by removing regional barriers, weakening 

national connections, and increasing the interdependency among 

people and between nations. The most effect is from economic/trade 

liberalization and reforms to open up the agro-industrial sector. 
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Though these are the general factors influencing land use change, Lambin et al., (2003) 

specifies the most frequent causes of land use change such as resource scarcity (which causes 

pressure on resources), market opportunities, outside policy interventions, loss of capacity and 

increased vulnerability, changes in social organization, changes in resource access, and changes 

in attitude. 

Generally, in sub-Saharan countries, the most important drivers of forest degradation 

have been identified as the extraction of fuel wood, where 80% of the population uses wood as its 

main source of energy, and agriculture, which represents the primary source of income for 70% 

of the population. Additionally, forest policy, persistent conflict and war, demography and 

population movement, low economic growth and poverty, debt and dependence on development 

assistance, constraints arising from globalization, predominance of the informal sector, and 

inadequate investment also are underlying drivers (Henry et al., 2011). Several studies have been 

done in Africa at the watershed, regional, and local level to look into LULC dynamics, and 

required looking at the population growth and socioeconomic influence in cause-cover 

relationships. Dale (1997) indicates that the effects of population growth modified by the local 

situation can be considered as an ultimate cause of LULC changes. Cadjoe (2007) points out that 

most of the studies in developing countries place a majority of their emphases on the local level, 

where direct causes of the land use /cover changes are observed. In studying cause-cover 

relationship, Cadjoe (2007) further indicates that linking people to the appropriate level to 

describe LULC changes is a challenge. However, population data can be linked easily at the 

regional, national, and district or municipal level and smaller (i.e., village level that makes the 

linkage difficult as it needs household survey data). 
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A study on land cover change was done on the Sub-Saharan Africa region for a 25-year 

period by Brink and Eva (2009). This region shows a wide range of climatic and ecological 

diversity with differences in land cover types, population, and land management techniques. The 

study showed that agriculture increased at the expense of forests and natural vegetation and 

concluded that population increase (with the majority living in rural areas) was the main driving 

force. At a smaller scale, Mundia and Aniya (2006) studied Kenyaôs Nairobi city as it had 

experienced rapid growth in population and spatial extent compared to other major cities in the 

region, and was showing disappearance of vegetation giving way to urban sprawl and 

agriculture.  They found that rapid economic development and urban population growth were the 

main reasons for the observed changes.  Southern Burkina Faso has also experienced rapid 

increased population density and growth especially at the district level due to immigration of 

peasants from other regions of the country. As a result, there was an expansion of agriculture at 

the expense of open woodland and dense forest cover. The study by Ouedraogo et al., (2010) of 

these districts showed that there was a highly significant Pearson Product Moment Correlation 

between area of cropland and population density. At the municipality level in Tanzania, 

Musamba et al. (2011) assessed the impact of such socioeconomic activities as fishing, tourism, 

crop production and livestock on LULC changes. The results showed that there was a strong 

relationship between the LULC changes and anthropogenic activities. Another study in South 

Africa (Giannecchini et al., 2007) involved three villages (at the local and household level) to see 

the relationship between land cover change and socioeconomics. The villages consistently 

showed an exponential increase in human settlement as a result of refugees in the mid 80's and a 

decrease in vegetation.  In addition, weakening of institutional control at the local level over 

natural resources was observed in each village during times of political change. As a result, 
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population growth, the weakening of control of property, and increased dependency of household 

livelihood on cash income enabled individuals to harvest live wood without impunity. Other 

studies using watersheds to assess the land cover changes and its drivers were also completed in 

Africa. These studies were employed on the Kagera basin (Wasige et al., 2013; Tolo et al., 

2012), Malagarasi catchment in Tanzania (Kashaigili and Majaliwa, 2010), and the Barekese 

catchment in Ghana (Boakye et al., 2008). Their findings indicated that land use was influenced 

by policy changes, lack of education, population growth, and socioeconomic issues. 

2.2.2. Land use and land cover detection 

 

Land use and cover data is collected through the combination of direct observation and 

remote sensing, with the latter being the most widely used method (Campbell, 2007). Data has 

been mapped at different scales using panchromatic, medium-scale aerial photographs since the 

1940ôs and more recently by using small-scale aerial photographs and satellite images (Lillesand 

et al., 2008). Satellite data has been valuable in partnership with socioeconomic surveys and 

census data for a better understanding of land use/cover dynamics and the factors that drive them 

(Codjoe, 2007).  

2.2.2.1. Image classification 

 

Image classification is an important part of remote sensing, one which assigns pixels to 

classes to produce land cover information. It involves image selection, preprocessing, algorithm 

selection, and training data (Lu et al., 2011; Campbell, 2007). Lu et al. (2011) indicate there are 

different classification approaches such as Supervised, Unsupervised and Hybrid; Parametric and 
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Non parametric; Hard and Soft (Fuzzy) classification; and Per pixel, Sub-pixel, and Per field. 

The techniques used, however, are typically influenced by usersô needs, the spatial resolution of 

satellite images, the complexity of the study areaôs landscape, available image processing and 

classification algorithms, and time constraints (Lu et al., 2011).  . 

Medium resolution images (e.g. Land sat) are most commonly used in LULC 

classification even though they have low time frequency, and rarely have cloud-free images 

(Henry et al., 2011). As spectral information is important for medium resolution image data, 

parametric classification algorithms such as maximum likelihood are often used, but Per pixel 

classifiers have repeated difficulties in dealing with mixed pixel problems (Lu et al., 2011). 

Lillesand et al. (2008) mention that the minimum distance classifier or algorithm has limitations 

where you have close spectral classes in measurement space and have high variance. In other 

words, it is insensitive to different degrees of variance in the spectral response of the data. The 

coarse resolution satellite images are not readily adapted; especially in estimation of 

deforestation at a national level (Henry et al., 2011). Lu et al. (2011), on the other hand, indicate 

that high resolution images such as QuickBird and IKONOS bring about high spectral variation 

within land cover class and as a result, Per pixel classifiers perform poorly. In such cases, Per 

field or object-oriented algorithms are appropriate (Lu et al., 2011) 

In classification, three methods are used: (1) Supervised (2) Unsupervised (3) Hybrid 

classification. Unsupervised classification is used to aggregate initially unknown pixels based on 

image values which are later compared to reference values to determine identity (Lillesand et al., 

2008). The most commonly used clustering algorithm in unsupervised classification is 

ISODATA. In a supervised classification method, pixels categorization is done by image analyst 
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who specifies samples of known cover types to numerical interpretation that distinguishes each 

classôs spectral attribute (Lillesand et al., 2008). This classification may include classifier 

algorithms such as minimum distance or Gaussian maximum likelihood.  Lillesand et al. (2008) 

mention that hybrid classification is very effective where land cover typesô spectral responses are 

highly variable, especially in vegetation species mapping. This method uses a combination of 

supervised and unsupervised approaches to improve the accuracy of purely supervised or 

unsupervised LULC classification (Lillesand et al., 2008). The unsupervised method is used to 

identify spectral classes present in the image which are later differentiated in supervised 

classification. 

Different studies have used different techniques in LULC mapping.  Mundia and Aniya 

(2006) used unsupervised classification method using ERDAS because it allowed spectral 

clusters to be identified with a high degree of objectivity. As a result of mixed pixels and same 

spectral responses (from moderate resolution images), the clusters were spectrally confused. 

They were then reclassified based on visual interpretation (local knowledge) and removed using 

the majority filter. A minimum distance algorithm was used during the classification. It showed 

an overall accuracy greater than 85% for each image classified. They used different images 

(ETM, TM and MSS) and used a modified version of Andersonôs classification scheme. Brink 

and Eva (2009) also used an unsupervised method using sampled images from TM and MSS 

images to assess a 25 year land cover change for continental Africa. This study had an issue with 

incompatibility of the images in terms of radiometric and spatial resolutions. In another study in 

Ghana, Boakye et al. (2008) used TM data in assessing the LULC changes using the 

unsupervised classification method.  
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Ouedraogo et al. (2010) also used a combination of satellite images (land sat scenes and 

ASTER) in studying the land cover dynamics of Sissili province of Burkina Faso. They 

classified the images using training data supported by topographic maps and ground-truthing to 

assign pixels to identified categories. A Maximum Likelihood algorithm was used on a tasseled 

cap transformed image, and the overall accuracy of the classified images ranged from 87.6% to 

94.4% for all land sat images and 92.5% to 94.8% for ASTER images. Others also used the 

supervised method and the maximum likelihood classifier in assessing the land use and cover 

dynamics. Wasige et al. (2013) validated their classified maps against aerial photograph 

topographic maps and field observation. They had an overall classification accuracy > 85%. In a 

similar study in Angola, Cabral et al. (2010) achieved an accuracy of 80%. The classification 

included ancillary data from Google Earth high resolution photography, visual interpretation of 

satellite images, vegetation maps and expert local knowledge. In both studies, Wasige et al. 

(2013) and Cabral et al. (2010) used a mosaic of TM/ETM images to encompass the study area, 

and the maps were made with images dated as closely to each other as possible.  

Studies have also used hybrid classification, which is the combination of both supervised 

and unsupervised classification. It is a valuable approach, although there is complex variability 

in the spectral response patterns for individual cover types present. This arises from different 

cover types or conditions (Lillesand et al., 2008).  Were et al. (2013) conducted land cover 

change detection for the Nakuru drainage basin in Kenya. They utilized TM, ETM and MSS 

images for different years and used supporting data from Google Earth imagery, thematic layers 

(Africover), field data, and topographic maps. They achieved an overall accuracy of 80% and 

above for the image classified and the change detection maps were above 70%. They attributed 

some of the classification errors they encountered to spectral confusion between croplands and 
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grasslands and among forests, shrub lands, and croplands. Similar studies which employed 

hybrid classification also generated successful classification performance (Paiboonvorachat and 

Oyana, 2010; Torahi and Rai, 2011). 

2.2.2.2. Change detection 

 

Change detection involves quantitatively identifying the differences between multi-

temporal data sets to see the dynamics of the phenomena of interest. The repetitive and synoptic 

data acquired from remote sensing has been a major source for change detection in past decades 

(Lu et al., 2011). Lu et al. (2011) point out that change detection gives an in-depth understanding 

of the relationships between human and natural phenomena for better management of resources. 

Accordingly, studies should involve the following information: change and rate of change, 

spatial distribution of change, and change trajectories of land cover types.   

Many change detection algorithms are available: those giving change or no change 

information as image differencing, image rationing, Principal Components Analysis (PCA), as 

well as those giving detailed ófrom-toô information as hybrid change detection and post- 

classification methods (Singh,1989; Lu et al.,2011; Lillesand et al.,2008; Campbell, 2007). The 

pitfall of implementing the detailed ófrom toô change detection is that accuracy of such 

procedures depends upon the accuracy of each of the independent classifications used in the 

analysis (Lillesand et al., 2008). That is to say accuracies arising from the classification images 

will affect the change detection results (Singh, 1989). As a result, the accurate classification of 

images is a critical step in image classification (Lu et al., 2011). Nevertheless, post-classification 

change detection is widely used, as it circumvents problems associated with multi-date images 

such as radiometric and atmospheric differences and registration errors (Singh, 1989).  This 
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method further provides useful information using matrices of from-to changes than those 

methods which provide only change or no change information such as image differencing 

(Campbell, 2007).  

Different studies have used different change detection methods. In assessing land cover 

changes and its effects on soil erosion in the Nan watershed in Thailand, Paiboonvorachat and 

Oyana (2010) used the post classification method for change detection. They used IDRISI to 

generate the cross tabulation matrices (cross tabulation) and cross classification to observe the 

ófrom-toô change. Shalaby and Tateishi (2007) in Egypt used the same technique in (post 

classification change detection) IDRISI to produce cross-tabulation and assess the changes that 

occurred in the north western coast. In studying the land cover and forest change in the 

mountainous area of Dehdez, Iran, Torahi and Rai (2011) used the post classification change 

method in INVI. Other studies in Africa which sought to quantify LULC dynamics also applied 

the post classification detection technique (Were et al., 2013; Kashaigili and Majaliwa, 2010; 

Boakye et al., 2008; Mundia and Aniya, 2006; Wasige et al., 2013; Shiferaw, 2011). 

Researchers have used a variety of other methods in their studies as well. In assessing the 

potential of high resolution land satellite data for the horn of Africa, Brink and Eva (2011) 

overlaid two grid images and used the change or no change method using 7x7 gird 

boxes(300mby 300m) and  visual interpretation. In Mozambique, Jansen et al. (2008) used 

object-oriented GIS overlay between images to assess the change that had occurred in the 

Manica province.  Giannecchini et al. (2007) used raster images of cover (derived from aerial 

photographs) to compare the relative frequency of cover between the years of the study period.  
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2.2.3. Land cover changes in Kagera 

 

Studies of LULC changes in the Kagera basin have previously been performed.  Tolo et 

al. (2012) assessed the degradation of natural resources of the Kagera basin and sub-basin 

(Uganda) for the period between 1984 and 2002. In their studies for the Kagera basin, they 

identified and mapped 8 major land use and cover types; urban areas, forest, water bodies, 

woodlands of different types, cultivated land with different crops, bush land of different types, 

open land, and grassland with different types. This was done using Landsat, aerial photography, 

and ground-truthing. The results indicate that there are variations in the dynamics observed for 

woodland areas and bush land. The forest, cultivated land, and urban areas showed increases in 

areal coverage whereas water bodies showed a loss or decrease in areal coverage for the study 

period.  

A similar study of the Kagera basin was done by Wasige et al. (2013). The researchers 

examined LULC dynamics for the period between 1901 and 2010 using historical thematic maps, 

topographic sheets, interviews, ground truthing, literature review, and satellite images. They 

identified the land cover classes as dense forest, degraded forest, woodlands, savannas, tea, 

plantation forest, bamboo, water bodies, farmlands, urban and built up areas, and permanent 

wetlands. Their findings show that the dominant LUCC change was by farm land, which 

increased to 60% of the total watershed area.  They also found there was a decrease in dense 

forest (from 7% to 2.6%), woodlands (from 51% to 6.9%), and savannas (from 35% to 19.6%). 

As for the water bodies and wetlands, their study showed no change for the study period. 
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CHAPTER 3 

DATA AND METHODOLOGY  

3.1. Study area   

 

The Kagera river basin is located in Eastern Africa. It is located between 29
0
1ô37ò E and 

31
0
 40ô19ò and between 3

0
57ô 21ò S and 0

0
39ô 32ò S and covers an area of 63,500 km

2
 

(6,350,400 ha) (Figure 3.1a). The watershed spans across four countries; Burundi (23%), 

Rwanda (36%), Uganda (7%), and Tanzania (35%) (NBI, 2008).

 

Figure 3.1a Map of Kagera basin showing neighboring countries: Uganda, Tanzania, Democratic 

Republic of Congo, and Burundi  



 

23 

 

Approximately 15 million people live in Kagera and 90% of the population consists of 

subsistence farmers who live in rural areas and depend directly on farming, herding, and fishing 

activities (FAO, 2013; NBI, 2008). The mean annual growth rate (2.7%) and fertility rate (6.34) 

of this region is higher compared to other sub-Saharan countries (NBI, 2008). 

The climate of the Kagera basin is characterized by humid, sub-humid, and semi-arid 

climates with two dry seasons (June to September and December to February) and two rainy 

seasons per year, the wettest months being in April and November (FAO, 2013). Being a tropical 

location, temperatures are very constant. The average annual temperature is lower in the western 

and north western areas (15 to 18
 0 

C), with an average of 22 
0
 C in the central part of the 

watershed (NBI, 2008).  The mean minimum temperature is 14.5 
0
 C and the mean maximum 

temperature is 27.5 
0
 C (NBI, 2008). The pattern of rainfall is distributed in such a way that the 

western parts of Rwanda and Burundi receive higher rainfall (over 1800 mm), with most of the 

eastern part receiving less than 1000 mm; with the exception of an area near Lake Victoria (NBI, 

2008). 

Kagera basin has an important river called Kagera River running through it, forming part 

of Tanzaniaôs border with Rwanda and Uganda.  This basin is part of the Lake Victoria basin and 

drains into Victoria Lake, contributing up to almost one-fourth of the inflow (FAO, 2013). Water 

from Lake Victoria eventually flows to the Mediterranean. 

The Kagera has two major topographical zones; the West Rift Zone Scarp and Lake 

Victoria Basin. The West Rift Zone is on the eastern side of the Western Rift valley which forms 

the boundary between Rwanda and the Democratic Republic of Congo. The Nile Basin Initiative 

(2008) indicates that there are four hydro-geographical zones based on shared similarity in 
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geology, landforms, relief, climate and stream flow. These zones are the Congo Nile Divide, 

Hills and Mountain Foot Ridges, Swamp and Lake Terrain, and West Victoria Lake region 

(Figure 3.1.b). The Congo Nile Divide encompasses the western part of the basin along the 

border with the DR Congo and is characterized by a heavily dissected mountainous area with 

steep slopes. The hill and mountain foot ridges are located mostly in Burundi. The majority of 

the Swamp and Lake Terrain region is located in the central part of the watershed. This is 

characterized by plain, plateaus mixed with some mountain and hills. Lastly, the West Victoria 

Lake region is in the eastern part of the basin (mostly in Tanzania) and is characterized by 

alluvial plains and plateaus.  

The basin has a general elevation of 1200 to 1600 m. The west part of the basin has a 

higher general elevation of 2500 m with peaks in the north western corner reaching up to 4500 m 

in elevation. The eastern portion has an elevation lower than 1300 m (Shahin, 1985; NBI, 2008). 

Most of the Kagera area is cultivated agricultural lands. Natural vegetation follows with 

only 2% of Kagera being covered by closed forest, the largest of which is Nyungwe forest. 

Nyungwe forest is one of the largest mountainous rain forests remaining in Africa (GWP, 2011).  

Natural vegetation types include forests and woodlands, savannas, shrub lands, pasture lands, 

and aquatic vegetation in wetlands (NBI, 2008). 
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Figure 3.1.b Hydro geographical zones of Kagera (Source: NBI, 2008) 
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3.2. Data description and collection 

 

 In this study Landsat images, ancillary data (reference maps and Google 

photography), and administrative level census data from the four countries (Uganda, Burundi, 

Rwanda and Tanzania) were used. 

3.2.1. Image acquisition and preparation 

 

The selection of remotely sensed data depends on factors such as the scale of study area, 

availability of image data, and cost/time. Landsat thematic mapper (TM) data is frequently used 

at a regional scale (Lu et al., 2011).The Landsat TM images used for this study were accessed for 

free from the Earth Resources Observation and Science Center (EROS) of the United States 

Geological Survey (http://glovis.usgs.gov/).  The path and rows for the scenes covering the study 

area were identified (Table 3.1). Discrimination of change involved the use of multi-temporal 

images. Ideally all the images should be acquired from the same sensor, be recorded with the 

same spatial and radiometric resolution, viewing geometry, and time of day (Lillesand et al., 

2008). 

Different considerations were taken when selecting the study period such as the 

availability of images for the intended years,  predominately cloud free images in each scene or 

study area, and availability and closeness (in terms of month) of each scene involved for a single 

year. Images were selected from the dry season; when cloud coverage is usually found to be at a 

minimum. However, complete Landsat TM data for the period of interest was not available, with 

available scenes containing cloud cover. Thus, it was not possible to compile a consistent dataset 

for the watershed. Henry et al. (2011) indicate the difficulty in obtaining cloud free images as 

http://glovis.usgs.gov/
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one of the limitations inherent to Land Sat. Therefore, this study used scenes from those years 

closest to the year of interest (previous or next). In addition to image selection criteria, the time 

points 1984, 1994, and 2011 from TM 4 and 5 were selected to allow for adequate period gaps 

and range to detect land cover change. Also the years or time points chosen were meant to 

coincide with major socioeconomic and political changes for the study region in order to best 

capture change. Once the scenes were selected, the images were downloaded and 6 bands, 

excluding the thermal band (bands 1 through 5 and 7), were stacked to form multi-band images 

using ERDAS IMAGINE 2011. 

Table 3.1 Predominantly cloud free Landsat scene chosen for the land cover classification. 

Source: USGS 

Year Sensor Path / Row Acquisition Date 

1984 

 

Landsat TM 173/61 19thJuly 1986 

Landsat TM 173/62 19th July 1986 

Landsat TM 172/61 6th June 1984 

Landsat TM 172/62 20th June 1984 

Landsat TM 172/63 20th June 1984 

1994 

 

Landsat TM 173/61 Jan 1st 1995 

Landsat TM 173/62 25th July 1994 

Landsat TM 172/61 4th Sept 1994 
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Table 3.1 (Continued) 

1994 Landsat TM 172/62 3rd Aug 1994 

Landsat TM 172/63 3rd Aug 1994 

2011 

 

Landsat TM 173/61 8th July 2011 

Landsat TM 173/62 8th July 2011 

Landsat TM 172/61 25th June 2009 

Landsat TM 172/62 8th Feb 2011 

Landsat TM 172/63 1st July 2011 

 

3.2.2. Population data 

 

 To estimate the population of Kagera, the districts (administrative regions) from the 

four sharing countries were selected by over-laying them on the watershed. Then population data 

was acquired for each district in the Kagera basin. These were collected from the different 

government websites of Tanzania (www.geohive.com), Uganda Bureau of Statistics 

(www.ubos.org), National Institute of Statistics of Rwanda (www.statistics.gov.rw), and United 

Nations development program Burundi (www.bi.undep.org) (See Appendix B). The national 

census is conducted at different times for each country so the population during the inter-census 

periods was estimated for each district in each country. Interpolation/extrapolation was done to 

fill the gaps and harmonize the data for the four countriesô districts. The growth trend calculation 

was used to fill in a series of missing values (interpolate and extrapolate) using the series 
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command in Microsoft Excel. This assumes that a population will increase or decrease 

exponentially (See appendix B). 

Exponential growth estimation formula is shown below; 

Growth rate 1/( ) (( ) ) 1nPl
r

Pb
= -where Pl= population at launch year; Pb= population at base year 

and n is period of time 

*(1 ) zPt Pb r= + Where Pt= is the population in the target year, and z is the number of years in 

the projection horizon.  

   

3.2.3. Ancillary data 

 

Ancillary data were used to support the classification. Thematic maps of the Kagera basin 

for the years 1985, 1995, and 2010 were scanned and geo referenced using ArcGIS 10 to 

Universal Transverse Mercator grid (zone 36 N, WGS 84 ellipsoid and datum). These data were 

prepared to support classification and assess the accuracy of the classified images. High 

resolution Google imagery and local knowledge were also used to support the classification. 
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3.3.3 Flow chart of the methodology 

 

The figure below shows the methodology followed during this study.  Two parallel 

procedures were followed for population data and satellite TM images. 
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Figure 3.2 Flow chart of a methodology 
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3.3. Image preprocessing 

 

Level 1T images were used, which are systematically processed for radiometric and 

geometric accuracy using ground control or elevation data. In addition, DEMs were used for 

topographic accuracy and to prevent distortions in the images (USGS, 2013). Radiometric 

correction was conducted on the mosaicked image by removing haze in ERDAS. Further 

correction was done using ATCOR software. ATCOR is one of the most popular commercially 

available atmospheric correction codes for land imagery (Lu et al., 2011). It removes the effects 

(e.g. bi-directional reflectance) of solar illumination and viewing geometry of different sensors 

by way of normalizing the data to nadir reþectance values with its sensor-speciýc atmospheric 

database look-up tables. ATCOR also removes the atmospheric and topographic effects using its 

physical model which is advantageous for multi-temporal data (Richter and Schlapfer, 2013). 

Figure 3.2 shows the image after atmospheric/radiometric correction. Though the image for 1994 

shows some cloud coverage, it was the best mosaic available for this area and period. However 

the majority of cloud coverage was outside of the watershed. 
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Figure 3.3 Mosaicked Landsat images after radiometric correction and haze reduction 
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3.4. Land use and Land cover classification and accuracy assessment 

 

Classification of remotely sensed data uses image processing software, and for this study 

ERDAS IMAGINE 2011 version 11.0 was used. Once the images were classified, the newly 

classified maps were evaluated for classification performance using an error matrix. 

3.4.1. Image classification 

 

For this study, the USGS classification system was used. This is a widely used general-

purpose LULC classification system (Campbell, 2007). The system is a reasonable and enduring 

classification scheme which allows interpretation of features from remotely sensed images 

(Lillesand et al, 2008).  Having images with a resolution of 30, the more generalized level I 

classification system was used for this study. Anderson et al., (1976) mentions that this is more 

appropriate for nationwide information gathering and designed for use with Landsat satellite 

data. In other words, it is applicable to images having a resolution of 20 to 100 (Lillesand et al, 

2008). 

Based on the combination of ancillary data (a thematic reference map and high resolution 

Google earth photography), literature provided, close visual inspection of remotely sensed data, 

and the local knowledge of Dr. Oyana; five easily identifiable broad classes were identified 

(Table 3.2). Detailed land cover classes could not be completed due to limitations in the data. 

However, these broad classes give a general trend or dynamics of LULC at the scale of the study 

area. Also, urban areas could not be classified due to their very small size and spectral similarity 

with woodland savanna. As a result, they were not included in the interpretation of land cover 
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dynamics. The woodland and savannas were categorized into one as it was difficult to 

differentiate between the two using the data provided. 

Table 3.2 Land use and land cover classes 

ID Class Name 

1 Forest 

2 Water bodies 

3 Wetland 

4 Woodland Savanna 

5 Agriculture 

 

Different methods are available for classification and choosing a method depends on the 

resolution of the image and availability of classification software, among many factors (Lu et al., 

2011).   For this study a supervised approach was used.  In supervised classification, known 

representative training areas are picked by the image analyst to describe the spectral attributes of 

each feature type of interest (Lille sand et al. 2008). A Minimum distance algorithm (a traditional 

Per pixel classifier) was used for the classification of the images. Lu et al (2011) mention that 

spectral information is important in medium resolution images as there is a loss of spatial 

information, and parametric classification algorithms are often used if imagery is spectral based. 

Guided by the ancillary data, spectral signatures were acquired to train the classification through 

visual interpretation of the satellite images (notable classes as lakes, wetland and forest) and 
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local/expert/interpreter knowledge of area. This information was coupled with temporally 

invariant land cover types (e.g. national parks) and high resolution Google imagery. The Area of 

Interest (AOI) tools (such as a polygon) and Seed Growing tool in ERDAS IMAGINE were used 

in acquiring the signatures. 

After supervised classification of the images, the next step involved recoding of land use 

covers and further modification. Ancillary data (thematic map and Google high resolution 

photography), visual interpretation of the satellite image in comparison to thematic maps, and 

knowledge of the area were integrated to improve the accuracy of the land cover maps. 

Modification of land use cover is one of the processing roles after classification (Lu et al., 2011). 

The next step was the removal of the ñsalt and pepper effectò. The salt and pepper effect is the 

result of a spectral signature-based, per pixel classification of a complex or heterogeneous 

landscape. Often a majority filter is used to reduce this effect (Lu et al., 2011; Lillesand et al., 

2008).  

The Kagera study area covers a large area with complex land forms and will inevitably 

have noise due to LULC cover and classification. A 15 x 15 thematic pixel aggregation tool in 

ERDAS IMAGINE was used to reduce this noise by down sampling so as to be comparable to 

the reference thematic map for accuracy assessment. Areas for each category for the three years 

were then calculated using ArcGIS 10. 
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3.4.2. Accuracy assessment 

 

A quantitative approach to accuracy assessment based on sampling strategy was used in 

this study. Accuracy assessments measure how close an image of unknown quality is to a 

standard image assumed to be correct (Campbell, 2007). An error matrix is the most commonly 

used method, with its assessment elements including overall accuracy, omission error, 

commission error, and kappa coefficient. Generating this requires, among other things, the 

consideration of sampling size, sample unit, and the collection of reference data (Lu et al, 2011; 

Lillesand et al 2008).  A random stratified distribution parameter was used to circumvent the 

problem of under sampling of smaller classes associated with random sampling (Lillesand et al, 

2008). In total, 350 pixel samples were used in the accuracy assessment of the classified images 

of 1984, 1994 and 2011, and scanned thematic maps of 1985, 1995 and 2010 were used as 

reference data.  Each of the 5 categories was used as stratum to generate the random sampling 

points. 50 random points were used for each forest, water body, and wetland as they represented 

smaller proportions of the watershed. 100 random points were generated for each woodland 

savanna, and agricultural area as these represented larger proportions of the watershed area. 

Lillesand et al. (2008) recommend as a general guideline that a minimum of 50 samples per 

category be used in error matrix, and 75 to 100 samples per category if an area is more than one 

million acre, or has a large amount of vegetation. 

During the accuracy assessment, pixels that fell on or near the boundaries of the LULC 

class or watershed were removed to lessen the influence of potential registration errors. Using 

ERDAS IMAGINE 2011, the pixel class values for reference data were put in the accuracy 

assessment table and finally, an assessment report was generated. 




















































































































